As you may have discovered, too much rear brake in a FWD car causes the rear to seek its own path. With rear weight at only 36 percent, I think almost any braking at the rear on a dirt track would have the above effect. Brake proportioning devices are not adjustable enough to get down to 5 percent rear and 95 percent front. Solution: The rear brakes are still on the car but the lines are plugged. You say you want four-wheel brakes so you can stop? With only 36 percent of the weight on the rear, a strong application of the brakes will likely shift at least 15 percent of the weight to the front. That doesn't leave much weight for forward traction on the rear wheels. Only a small amount of braking would lock up the rear. I think I would rather have directional control of the rear wheels at that point.

As you can see in the setup illustration (p. 60), the left-front is by far the heaviest corner. This is to make the left-front wheel with its 2-inch stagger (2-inch smaller circumference) pull down into the turn. With the left-rear being so light, use your "least best" tire on this corner.

Pete Paulsen at Wheels By Paulsen is heavily involved in Mini-Stocks and even races one himself. He recommended a selection of three-off and four-off 13x7-inch wheels. Ours are not the lightest available but are on the budget end. The 7-inch width is for the track-specified tire. We could have used an 8-inch tire, but Pete thought this might be a better setup on dirt.

Don't forget about using tire size to shift weight. If your track doesn't allow any suspension adjustments, do what you can with tire size. A taller tire increases weight on that corner, while a shorter tire decreases weight. Use this to help set crossweight.


The engine fired right up. The HEI/DUI from Performance Distributors found a home at 43 degrees of advance. I guess the semi-hemi combustion chamber with no squish band is the reason it takes so much. I found this setting by propping the throttle open to 3,500 rpm and twisting the distributor. I twisted it to make peak revs, then backed off just a bit. This came out 43 degrees. I never found anyone who knew what the total advance was supposed to be on these engines.

The Colt Cam sounded sharp. Geoff Bardal at Colt said this cam could be run to about 7,000 rpm with stock valvesprings. I can tell you, at this point it certainly sounds crisp in the shop. Geoff told me that when we need some more power and can invest in some valvesprings, he would be willing to oblige. The cam's specs are:

Intake: 292 degrees duration (adv.)
Exhaust: 300 degrees duration (adv.)
Intake lift: 0.422 inch
Exhaust lift: 0.414 inch

Setting the valves is just like setting those on a V-8-there are 16 valves. The Honda has four valves per cylinder. The recommended lash on this cam is 0.006-inch intake and 0.007-inch on the exhaust.

Another surprise came when we picked up the carefully stored radiator/fan unit. While disassembling the fans, we discovered that the bracket attached to the radiator covered a big hole in the plastic tank. The front end of a Honda is less than tall, but width is not a problem. Most racing radiators are at least 19 inches tall. I spoke with Chas Howe at Howe Racing Products. His catalog lists several 16-inch-tall radiators. A 16x26-inch aluminum unit with two wide cores fit perfectly in the space available. Of course new brackets had to be made, but that was easy. So far, due to the size of the radiator, only one of the stock Honda electric fans has been needed. This will keep the alternator from working so hard.